A prevalent transversality theorem for Lipschitz functions
نویسندگان
چکیده
منابع مشابه
A Prevalent Transversality Theorem for Lipschitz Functions
This paper provides a version of the transversality theorem for a class of Lipschitz functions of the form f : R × C → Rn where C is a convex subset of a normed vector space Z indexing the parameters in the problem. The set C may be infinite-dimensional, and the notion of generic used is the measure-theoretic notion of prevalence introduced by Hunt, Sauer and Yorke (1992) and Christensen (1974)...
متن کاملA Generalization of Thom’s Transversality Theorem
We prove a generalization of Thom’s transversality theorem. It gives conditions under which the jet map f∗|Y : Y ⊆ Jr(D,M)→ Jr(D,N) is generically (for f : M → N) transverse to a submanifold Z ⊆ Jr(D,N). We apply this to study transversality properties of a restriction of a fixed map g : M → P to the preimage (jsf)−1(A) of a submanifold A ⊆ Js(M,N) in terms of transversality properties of the o...
متن کاملTitchmarsh theorem for Jacobi Dini-Lipshitz functions
Our aim in this paper is to prove an analog of Younis's Theorem on the image under the Jacobi transform of a class functions satisfying a generalized Dini-Lipschitz condition in the space $mathrm{L}_{(alpha,beta)}^{p}(mathbb{R}^{+})$, $(1< pleq 2)$. It is a version of Titchmarsh's theorem on the description of the image under the Fourier transform of a class of functions satisfying the Dini-Lip...
متن کاملA further result on an implicit function theorem for locally Lipschitz functions
Let H : <m×<n → <n be a locally Lipschitz function in a neighborhood of (ȳ, x̄) and H(ȳ, x̄) = 0 for ȳ ∈ <m and x̄ ∈ <n. The implicit function theorem in the sense of Clarke [1, 2] says that if πx∂H(ȳ, x̄) is of maximal rank, then there exist a neighborhood Y of ȳ and a Lipschitz function G(·) : Y → <n such that G(ȳ) = x̄ and for every y in Y , H(y,G(y)) = 0. In this paper, we shall further show tha...
متن کاملtitchmarsh theorem for jacobi dini-lipshitz functions
our aim in this paper is to prove an analog of younis's theorem on the image under the jacobi transform of a class functions satisfying a generalized dini-lipschitz condition in the space $mathrm{l}_{(alpha,beta)}^{p}(mathbb{r}^{+})$, $(1< pleq 2)$. it is a version of titchmarsh's theorem on the description of the image under the fourier transform of a class of functions satisfying the dini-lip...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2006
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-06-08607-2